四川理工学院 2017 年研究生招生考试业务课试卷

(满分: 150分,所有答案一律写在答题纸上)

适用专业: 0817Z3 腐蚀与防护、程	0817Z5 材料化学工程、085204 材料工
考试科目: 801 材料科学基础 A 考试时间: 3 小时	
一、选择题(每题2分,共20分)	
1. 体心立方(bcc)结构的滑移系	泛是 ()。
(A) {111}<110>;	(B) {111}<111>;
(C) {110}<111>;	(D) {110}<110>°
2. 属于包晶反应的是()。(注: L表示液相,α、β表示固相)
(A) L+ $\alpha \rightarrow \beta$;	(B) L+ $\beta \rightarrow \alpha + \beta$;
(C) L→α+β;	(D) $\alpha+\beta\rightarrow L$.
3.由低浓度处向高浓度处扩散称为	为 ()。
	; (C) 上坡扩散; (D) 短路扩散。时,螺型位错的位错线与 b ()。
(A) 垂直; (B) 平行;	(C) 同向; (D) 反向。
5. () 不是晶体缺陷。	
(A) 空位; (B) 位错;	(C) 晶界; (D) 偏析。
6. 第二相硬度不高、粒子不大时	,位错主要通过()。
(A) 热激活机制;	(B) 攀移机制;
(C) 绕过机制;	(D) 切割机制。
7. 铁碳合金中的 Fe3C _Ⅱ 是从()中析出来的。
(A) 液相; (B) 奥氏体	; (C) 铁素体; (D) 珠光体。
(共5页,第1页)	

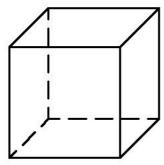
- 8. 冷变形金属再结晶过程中性能(指标)增加的是()。
 (A) 强度; (B) 硬度; (C) 塑韧性; (D) 残余内应力。
 9. 根据原子在相界面上排列的特点,不能把相界面分为()。
 (A) 非共格界面; (B) 共格界面; (C) 半共格界面; (D) 大晶角界面。
 10.固溶体的特点是()。
 (A) 具有较高的强度,同时具有高的塑形; (B) 具有高的硬度,同时具有低的塑性; (C) 有低的强度,同时具有低的塑形; (D) 具有高的强度,同时具有低的塑性。
- 二、名词解释(每题3分,共15分)

1.加工硬化; 2.过冷度; 3.均匀形核; 4.固溶体; 5.晶界。

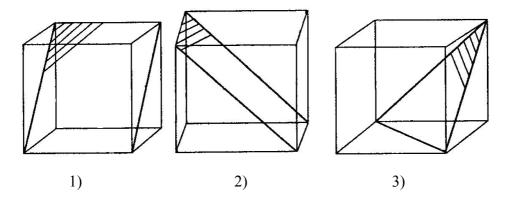
- 三、简答题(每题6分,共30分)
- 1. 对具有面心立方结构的 Cu 单晶体,当拉力轴沿[001]方向,问施加应力为 100 MPa 时,在(111)面上的 $[0\overline{1}1]$ 方向分切应力是多少?
- 2.在负温度梯度下,液态金属能够结晶出树枝晶。要求:
 - 1) 画出树枝晶示意图;
 - 2) 简述树枝晶长大过程。
- 3.判断下列位错反应能否进行:

$$\frac{a}{2}[10\overline{1}] + \frac{a}{6}[\overline{121}] \to \frac{a}{3}[11\overline{1}] \qquad 2) \quad \frac{a}{3}[112] + \frac{a}{6}[11\overline{1}] \to \frac{a}{2}[111]$$

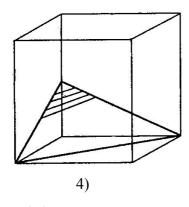
- **4.**将经过 70%以上冷变形的纯金属长棒一端浸入冰水中,另一端加热到 0.7T_烯,保温一小时后试样全部冷到室温。画出沿长度方向:
 - 1) 硬度分布示意图;
 - 2) 组织示意图,并简要说明。

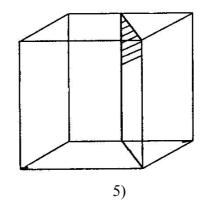

(共5页, 第2页)

5. 孪生的特点。


四、作图题(共30分)

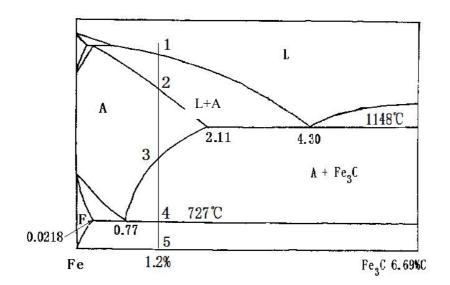
- **1.(10 分)**铋(**Bi** 熔点为 **271.5℃**)和锑(**Sb** 熔点为 **630.7℃**)在液态和固态时均能彼此无限互溶, ω_{Bi} =**50%**的合金在 **520℃**时,开始结晶出成分为 ω_{Sb} =**87%**的固相。 ω_{Bi} =**85%**的合金在 **400℃**时,开始结晶出成分为 ω_{Sb} =**64%**的固相。根据上述条件,绘出 **Bi-Sb** 二元匀晶相图,并标出各区名称。
- **2**. (**10** 分)在如下图的立方晶胞中分别绘出晶向[**101**]、[**121**]、[**121**]、[**121**]、[**111**]。


(要求:每一个晶向单独绘于一立方晶胞图中)。



3. (10分)确定以下立方晶胞中的晶面指数。

(共5页,第3页)



五、综合题(55分)

- 1. (15分) 某材料为面心立方晶体结构, 其晶包点阵常数为 a。
 - 1) 画出面心立方晶体的(100)、(110)和(111)晶面的原子排列图;
- 2) 计算面心立方晶体的(100)、(110)和(111)晶面的原子密度(原子个数/单位面积)。
- **2.** (**20** 分) γ-Fe 在略高于 910℃时,点阵常数 a=0.3633nm,α-Fe 在略低于 910℃时,点阵常数 a=0.2892 nm,求:
 - 1) 上述温度时γ-Fe 和α-Fe 的原子半径;
 - 2) γ-Fe 向α-Fe 转变时的体积变化率。
- 3) 如果 γ -Fe $\to \alpha$ -Fe 转变时,原子半径不发生变化(保持 γ -Fe 原子半径不变),求此转变的体积变化。
- 3. (20分) 依据 Fe-C 相图完成下列问题。
 - 1) 写出共晶转变、共析转变的平衡转变式;
- 2) 写出常温下 **Fe-C** 相图中,含碳量分别为 0.4%C、0.77%C、0.9%C、4.30%C 的铁碳合金的平衡组织:
 - 3) 画出 1.2%C 的碳钢从液态冷到室温的平衡结晶过程示意图。
- 4) 计算 1.2%C 的碳钢室温下组织组成物的相对量。(提示:**不计算** 三次渗碳体)

(共5页,第4页)

Fe-C 合金相图