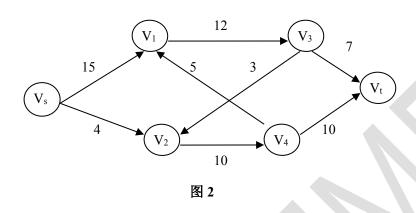

《运筹学》试题样题


第1题(10分)判断下列说法是否正确,在括号内写明对错。
(1) 增加约束条件时, 线性规划模型的可行域不扩大。()
(2) 线性规划问题的对偶问题的对偶问题是原问题。()
(3) 动态规划的逆推与顺推解法得到相同的最优解。()
(4) 若某种资源的影子价格等于 k ,在其他条件不变的情况下,当该种资源增加 5 时,
相应的目标函数值将增大 5 k。()
(5) 加非负权无向连通图中任两点间必存在最短路径。()
第2题(10分) 填空
(1) 若原问题为无界解,则对偶问题的解是。
(2) 任何图中, 奇次顶点的个数为。
(3) 无向连通多重图 G 有欧拉通路的充分必要条件为。
(4) 在一个网络中,可行流 f^* 是最大流,当且仅当。
(5) 对于多阶段决策问题来说,状态不仅要描述过程的具体特征,而且一个根本的
要求是必须满足。
第3题(20分)下表1是某求极大化线性规划问题计算得到的单纯形表。表中无人工变
量, a_1,a_2,a_3,d,c_1,c_2 为待定常数, $d > 0$ 。试说明这些常数分别取何值时,以下结论成立。
(1) 表中解为惟一最优解;
(2) 表中解为最优解,但存在无穷多最优解;
(3) 该线性规划问题具有无界解;

(4) 表中解非最优,为对解改进,换入变量为 x_1 ,换出变量为 x_6								
	表 1							
	基	b	x_1	x_2	x_3	x_4	x_5	x_6
	x_3	d	4	a_1	1	0	a_2	0
	x_4	2	-1	-3	0	1	-1	0
	x_6	3	a_3	-5	0	0	-4	1
	c_j –	z_j	c_1	c_2	0	0	-3	0

第4题(10分)用破圈法或避圈法求下图1的最小生成树,并指出其权重和。

第5题(15分)求下图2的网络最大流和最小截集, 弧旁数字为容量。

第6题(20分)某项目的相关资料见下表2。

表 2

工作代号	紧前工作	持续时间
A		4
В	A	6
C	A	8
D	A	7
Е	В	4
F	B, C, D	6
G	D	6
H	F. G	6

ES	LS	TF				
EF	LF					
图 例						

- (1) 绘制双代号网络图。
- (2) 用图上计算法计算时间参数。
- (3) 用双线标明关键线路,并注明总工期。

第7题(15分)某企业要投产一种新产品,投资方案有三个: S_1 , S_2 , S_3 , 不同经济形势下的利润如表 3 所示。请分别用 Maxmin 决策准则、Maxmax 决策准则、Laplace 决策准则、最小机会损失准则、折衷主义准则进行决策,其中乐观系数 $\alpha = 0.6$ 。

表 3

投资方案	不同经济形势				
仅页刀余	好	中	差		
S_1	22	10	- 5		
S_2	18	7	5		
S ₃	25	9	-4		